.. _plotting: ====================== Plotting brain images ====================== Nilearn comes with plotting function to display brain maps coming from Nifti-like images, in the :mod:`nilearn.plotting` module. .. currentmodule:: nilearn.plotting Different plotting functions ============================= Nilearn has a set of plotting functions to plot brain volumes that are fined tuned to specific applications. Amongst other things, they use different heuristics to find cutting coordinates. .. |plot_stat_map| image:: ../auto_examples/manipulating_visualizing/images/plot_demo_plotting_001.png :target: ../auto_examples/manipulating_visualizing/plot_demo_plotting.html :scale: 50 .. |plot_glass_brain| image:: ../auto_examples/manipulating_visualizing/images/plot_demo_glass_brain_extensive_001.png :target: ../auto_examples/manipulating_visualizing/plot_demo_glass_brain_extensive.html :scale: 50 .. |plot_connectome| image:: ../auto_examples/connectivity/images/plot_inverse_covariance_connectome_002.png :target: ../auto_examples/connectivity/plot_inverse_covariance_connectome.html :scale: 50 .. |plot_anat| image:: ../auto_examples/manipulating_visualizing/images/plot_demo_plotting_003.png :target: ../auto_examples/manipulating_visualizing/plot_demo_plotting.html :scale: 50 .. |plot_roi| image:: ../auto_examples/manipulating_visualizing/images/plot_demo_plotting_004.png :target: ../auto_examples/manipulating_visualizing/plot_demo_plotting.html :scale: 50 .. |plot_epi| image:: ../auto_examples/manipulating_visualizing/images/plot_demo_plotting_005.png :target: ../auto_examples/manipulating_visualizing/plot_demo_plotting.html :scale: 50 .. A temporary hack to avoid a sphinx bug .. |hack| raw:: html
=================== ========================================================= =================== ========================================================= |plot_anat| :func:`plot_anat` |hack| Plotting an anatomical image |plot_epi| :func:`plot_epi` |hack| Plotting an EPI, or T2* image |plot_glass_brain| :func:`plot_glass_brain` |hack| Glass brain visualization. By default plots maximum intensity projection of the absolute values. To plot positive and negative values set plot_abs parameter to False. |plot_stat_map| :func:`plot_stat_map` |hack| Plotting a statistical map, like a T-map, a Z-map, or an ICA, with an optional background |plot_roi| :func:`plot_roi` |hack| Plotting ROIs, or a mask, with an optional background |plot_connectome| :func:`plot_connectome` |hack| Plotting a connectome **plot_img** :func:`plot_img` |hack| General-purpose function, with no specific presets =================== ========================================================= .. warning:: **Opening too many figures without closing** Each call to a plotting function creates a new figure by default. When used in non-interactive settings, such as a script or a program, these are not displayed, but still accumulate and eventually lead to slowing the execution and running out of memory. To avoid this, you must close the plot as follow:: >>> from nilearn import plotting >>> display = plotting.plot_stat_map(img) # doctest: +SKIP >>> display.close() # doctest: +SKIP Different display modes ======================== .. |plot_ortho| image:: ../auto_examples/manipulating_visualizing/images/plot_demo_more_plotting_001.png :target: ../auto_examples/manipulating_visualizing/plot_demo_more_plotting.html :scale: 50 .. |plot_z_many| image:: ../auto_examples/manipulating_visualizing/images/plot_demo_more_plotting_002.png :target: ../auto_examples/manipulating_visualizing/plot_demo_more_plotting.html :scale: 50 .. |plot_x| image:: ../auto_examples/manipulating_visualizing/images/plot_demo_more_plotting_003.png :target: ../auto_examples/manipulating_visualizing/plot_demo_more_plotting.html :scale: 50 .. |plot_x_small| image:: ../auto_examples/manipulating_visualizing/images/plot_demo_more_plotting_004.png :target: ../auto_examples/manipulating_visualizing/plot_demo_more_plotting.html :scale: 50 .. |plot_z_small| image:: ../auto_examples/manipulating_visualizing/images/plot_demo_more_plotting_005.png :target: ../auto_examples/manipulating_visualizing/plot_demo_more_plotting.html :scale: 50 .. |plot_xz| image:: ../auto_examples/manipulating_visualizing/images/plot_demo_more_plotting_006.png :target: ../auto_examples/manipulating_visualizing/plot_demo_more_plotting.html :scale: 50 .. |plot_yx| image:: ../auto_examples/manipulating_visualizing/images/plot_demo_more_plotting_007.png :target: ../auto_examples/manipulating_visualizing/plot_demo_more_plotting.html :scale: 50 .. |plot_yz| image:: ../auto_examples/manipulating_visualizing/images/plot_demo_more_plotting_008.png :target: ../auto_examples/manipulating_visualizing/plot_demo_more_plotting.html :scale: 50 ================= ========================================================= ================= ========================================================= |plot_ortho| `display_mode='ortho', cut_coords=(36, -27, 60)` |hack| Ortho slicer: 3 cuts along the x, y, z directions |plot_z_many| `display_mode='z', cut_coords=5` |hack| Cutting in the z direction, specifying the number of cuts |plot_x| `display_mode='x', cut_coords=(-36, 36)` |hack| Cutting in the x direction, specifying the exact cuts |plot_x_small| `display_mode='x', cut_coords=1` |hack| Cutting in the x direction, with only 1 cut, that is automatically positionned |plot_z_small| `display_mode='z', cut_coords=1, colorbar=False` |hack| Cutting in the z direction, with only 1 cut, that is automatically positionned |plot_xz| `display_mode='xz', cut_coords=(36, 60)` |hack| Cutting in the x and z direction, with cuts manually positionned |plot_yx| `display_mode='yx', cut_coords=(-27, 36)` |hack| Cutting in the y and x direction, with cuts manually positionned |plot_yz| `display_mode='yz', cut_coords=(-27, 60)` |hack| Cutting in the y and z direction, with cuts manually positionned ================= ========================================================= Adding overlays, edges and contours ==================================== To add overlays, contours, or edges, use the return value of the plotting functions. Indeed, these return a display object, such as the :class:`nilearn.plotting.displays.OrthoSlicer`. This object represents the plot, and has methods to add overlays, contours or edge maps:: display = plotting.plot_epi(...) .. |plot_edges| image:: ../auto_examples/manipulating_visualizing/images/plot_demo_more_plotting_009.png :target: ../auto_examples/manipulating_visualizing/plot_demo_more_plotting.html :scale: 50 .. |plot_contours| image:: ../auto_examples/manipulating_visualizing/images/plot_demo_more_plotting_010.png :target: ../auto_examples/manipulating_visualizing/plot_demo_more_plotting.html :scale: 50 ================= ========================================================= ================= ========================================================= |plot_edges| `display.add_edges(img)` |hack| Add a plot of the edges of `img`, where edges are extracted using a Canny edge-detection routine. This is typically useful to check registration. Note that `img` should have some visible sharp edges. Typically an EPI img does not, but a T1 does. |plot_contours| `display.add_contours(img, levels=[.5], colors='r')` |hack| Add a plot of the contours of `img`, where contours are computed for constant values, specified in 'levels'. This is typically useful to outline a mask, or ROI on top of another map. |hack| **Example:** :ref:`example_manipulating_visualizing_plot_haxby_masks.py` **add_overlay** `display.add_overlay(img, cmap=plotting.cm.purple_green, threshold=3)` |hack| Add a new overlay on the existing figure |hack| **Example:** :ref:`example_manipulating_visualizing_plot_probabilistic_atlas.py` ================= ========================================================= Saving to an image file ======================== The simplest way to output an image file from the plotting functions is to specify the `output_file` argument:: >>> from nilearn import plotting >>> plotting.plot_stat_map(img, output_file='pretty_brain.png') # doctest: +SKIP In this case, the display is closed automatically and the plotting function returns None. | The display object returned by the plotting function has a savefig method that can be used to save the plot to an image file:: >>> from nilearn import plotting >>> display = plotting.plot_stat_map(img) # doctest: +SKIP >>> display.savefig('pretty_brain.png') # doctest: +SKIP # Don't forget to close the display >>> display.close() # doctest: +SKIP