Note

This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the user guide for the big picture.

nilearn.input_data.NiftiMasker

class nilearn.input_data.NiftiMasker(mask_img=None, sessions=None, smoothing_fwhm=None, standardize=False, detrend=False, low_pass=None, high_pass=None, t_r=None, target_affine=None, target_shape=None, mask_strategy='background', mask_args=None, sample_mask=None, memory_level=1, memory=Memory(cachedir=None), verbose=0)

Class for masking of Niimg-like objects.

NiftiMasker is useful when preprocessing (detrending, standardization, resampling, etc.) of in-mask voxels is necessary. Use case: working with time series of resting-state or task maps.

Parameters:

mask_img : Niimg-like object, optional

See http://nilearn.github.io/building_blocks/manipulating_mr_images.html#niimg. Mask for the data. If not given, a mask is computed in the fit step. Optional parameters (mask_args and mask_strategy) can be set to fine tune the mask extraction.

sessions : numpy array, optional

Add a session level to the preprocessing. Each session will be detrended independently. Must be a 1D array of n_samples elements.

smoothing_fwhm : float, optional

If smoothing_fwhm is not None, it gives the full-width half maximum in millimeters of the spatial smoothing to apply to the signal.

standardize : boolean, optional

If standardize is True, the time-series are centered and normed: their mean is put to 0 and their variance to 1 in the time dimension.

detrend : boolean, optional

This parameter is passed to signal.clean. Please see the related documentation for details

low_pass : False or float, optional

This parameter is passed to signal.clean. Please see the related documentation for details

high_pass : False or float, optional

This parameter is passed to signal.clean. Please see the related documentation for details

t_r : float, optional

This parameter is passed to signal.clean. Please see the related documentation for details

target_affine : 3x3 or 4x4 matrix, optional

This parameter is passed to image.resample_img. Please see the related documentation for details.

target_shape : 3-tuple of integers, optional

This parameter is passed to image.resample_img. Please see the related documentation for details.

mask_strategy: {‘background’ or ‘epi’}, optional :

The strategy used to compute the mask: use ‘background’ if your images present a clear homogeneous background, and ‘epi’ if they are raw EPI images. Depending on this value, the mask will be computed from masking.compute_background_mask or masking.compute_epi_mask. Default is ‘background’.

mask_args : dict, optional

If mask is None, these are additional parameters passed to masking.compute_background_mask or masking.compute_epi_mask to fine-tune mask computation. Please see the related documentation for details.

sample_mask : Any type compatible with numpy-array indexing

Masks the niimgs along time/fourth dimension. This complements 3D masking by the mask_img argument. This masking step is applied before data preprocessing at the beginning of NiftiMasker.transform. This is useful to perform data subselection as part of a scikit-learn pipeline.

memory : instance of joblib.Memory or string

Used to cache the masking process. By default, no caching is done. If a string is given, it is the path to the caching directory.

memory_level : integer, optional

Rough estimator of the amount of memory used by caching. Higher value means more memory for caching.

verbose : integer, optional

Indicate the level of verbosity. By default, nothing is printed

Attributes

Methods

__init__(mask_img=None, sessions=None, smoothing_fwhm=None, standardize=False, detrend=False, low_pass=None, high_pass=None, t_r=None, target_affine=None, target_shape=None, mask_strategy='background', mask_args=None, sample_mask=None, memory_level=1, memory=Memory(cachedir=None), verbose=0)
fit(imgs=None, y=None)

Compute the mask corresponding to the data

Parameters:

imgs: list of Niimg-like objects :

See http://nilearn.github.io/building_blocks/manipulating_mr_images.html#niimg. Data on which the mask must be calculated. If this is a list, the affine is considered the same for all.

fit_transform(X, y=None, confounds=None, **fit_params)

Fit to data, then transform it

Parameters:

X : Niimg-like object

y : numpy array of shape [n_samples]

Target values.

confounds: list of confounds, optional :

List of confounds (2D arrays or filenames pointing to CSV files). Must be of same length than imgs_list.

Returns:

X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)

Get parameters for this estimator.

Parameters:

deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:

params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Returns:self :
transform(imgs, confounds=None)

Apply mask, spatial and temporal preprocessing

Parameters:

imgs: list of Niimg-like objects :

confounds: CSV file path or 2D matrix :

This parameter is passed to nilearn.signal.clean. Please see the related documentation for details

transform_imgs(imgs_list, confounds=None, copy=True, n_jobs=1)

Prepare multi subject data in parallel

Parameters:

imgs_list: list of Niimg-like objects :

See http://nilearn.github.io/building_blocks/manipulating_mr_images.html#niimg. List of imgs file to prepare. One item per subject.

confounds: list of confounds, optional :

List of confounds (2D arrays or filenames pointing to CSV files). Must be of same length than imgs_list.

copy: boolean, optional :

If True, guarantees that output array has no memory in common with input array.

n_jobs: integer, optional :

The number of cpus to use to do the computation. -1 means ‘all cpus’.