User guide: table of contentsΒΆ
- 1. Introduction: nilearn in a nutshell
 - 2. Decoding and MVPA: predicting from brain images
- 2.1. A decoding tutorial
 - 2.2. Choosing the right predictive model
 - 2.3. Decoding on simulated data
 - 2.4. Searchlight : finding voxels containing information
 
 - 3. Functional connectivity and resting state
- 3.1. Extracting times series to build a functional connectome
 - 3.2. Connectome extraction: inverse covariance for direct connections
 - 3.3. Extracting resting-state networks with ICA
 - 3.4. Parcellating the brain in regions
 
 - 4. Image manipulation and visualization
- 4.1. Plotting brain images
 - 4.2. Data preparation: loading and basic transformation
- 4.2.1. The concept of “masker” objects
 - 4.2.2. 
NiftiMasker: loading, masking and filtering - 4.2.3. Extraction of signals from regions: 
NiftiLabelsMasker,NiftiMapsMasker. 
 - 4.3. Manipulating brain volume: input/output, masking, ROIs, smoothing...
 
 - 5. Advanced usage: manual pipelines and scaling up
 - 6. Reference documentation: all nilearn functions
- 6.1. 
nilearn.datasets: Automatic Dataset Fetching- 6.1.1. nilearn.datasets.fetch_atlas_craddock_2012
 - 6.1.2. nilearn.datasets.fetch_atlas_destrieux_2009
 - 6.1.3. nilearn.datasets.fetch_atlas_harvard_oxford
 - 6.1.4. nilearn.datasets.fetch_atlas_msdl
 - 6.1.5. nilearn.datasets.fetch_atlas_power_2011
 - 6.1.6. nilearn.datasets.fetch_atlas_smith_2009
 - 6.1.7. nilearn.datasets.fetch_atlas_yeo_2011
 - 6.1.8. nilearn.datasets.fetch_abide_pcp
 - 6.1.9. nilearn.datasets.fetch_adhd
 - 6.1.10. nilearn.datasets.fetch_haxby
 - 6.1.11. nilearn.datasets.fetch_haxby_simple
 - 6.1.12. nilearn.datasets.fetch_icbm152_2009
 - 6.1.13. nilearn.datasets.fetch_localizer_contrasts
 - 6.1.14. nilearn.datasets.fetch_localizer_calculation_task
 - 6.1.15. nilearn.datasets.fetch_miyawaki2008
 - 6.1.16. nilearn.datasets.fetch_nyu_rest
 - 6.1.17. nilearn.datasets.fetch_oasis_vbm
 
 - 6.2. 
nilearn.decoding: Decoding - 6.3. 
nilearn.decompositon: Multivariate decompositions - 6.4. 
nilearn.image: Image processing and resampling utilities - 6.5. 
nilearn.input_data: Loading and Processing files easily - 6.6. 
nilearn.masking: Data Masking Utilities - 6.7. 
nilearn.region: Operating on regions - 6.8. 
nilearn.mass_univariate: Mass-univariate analysis - 6.9. 
nilearn.plotting: Plotting brain data - 6.10. 
nilearn.signal: Preprocessing Time Series 
 - 6.1.