User guide: table of contentsΒΆ
- 1. Introduction: nilearn in a nutshell
- 2. Decoding and MVPA: predicting from brain images
- 2.1. A decoding tutorial
- 2.2. Choosing the right predictive model
- 2.3. Decoding on simulated data
- 2.4. Searchlight : finding voxels containing information
- 3. Functional connectivity and resting state
- 3.1. Extracting times series to build a functional connectome
- 3.2. Connectome extraction: inverse covariance for direct connections
- 3.3. Extracting resting-state networks with ICA
- 3.4. Parcellating the brain in regions
- 4. Image manipulation and visualization
- 4.1. Plotting brain images
- 4.2. Data preparation: loading and basic transformation
- 4.2.1. The concept of “masker” objects
- 4.2.2.
NiftiMasker
: loading, masking and filtering - 4.2.3. Extraction of signals from regions:
NiftiLabelsMasker
,NiftiMapsMasker
.
- 4.3. Manipulating brain volume: input/output, masking, ROIs, smoothing...
- 5. Advanced usage: manual pipelines and scaling up
- 6. Reference documentation: all nilearn functions
- 6.1.
nilearn.datasets
: Automatic Dataset Fetching- 6.1.1. nilearn.datasets.fetch_atlas_craddock_2012
- 6.1.2. nilearn.datasets.fetch_atlas_destrieux_2009
- 6.1.3. nilearn.datasets.fetch_atlas_harvard_oxford
- 6.1.4. nilearn.datasets.fetch_atlas_msdl
- 6.1.5. nilearn.datasets.fetch_atlas_power_2011
- 6.1.6. nilearn.datasets.fetch_atlas_smith_2009
- 6.1.7. nilearn.datasets.fetch_atlas_yeo_2011
- 6.1.8. nilearn.datasets.fetch_abide_pcp
- 6.1.9. nilearn.datasets.fetch_adhd
- 6.1.10. nilearn.datasets.fetch_haxby
- 6.1.11. nilearn.datasets.fetch_haxby_simple
- 6.1.12. nilearn.datasets.fetch_icbm152_2009
- 6.1.13. nilearn.datasets.fetch_localizer_contrasts
- 6.1.14. nilearn.datasets.fetch_localizer_calculation_task
- 6.1.15. nilearn.datasets.fetch_miyawaki2008
- 6.1.16. nilearn.datasets.fetch_nyu_rest
- 6.1.17. nilearn.datasets.fetch_oasis_vbm
- 6.2.
nilearn.decoding
: Decoding - 6.3.
nilearn.decompositon
: Multivariate decompositions - 6.4.
nilearn.image
: Image processing and resampling utilities - 6.5.
nilearn.input_data
: Loading and Processing files easily - 6.6.
nilearn.masking
: Data Masking Utilities - 6.7.
nilearn.region
: Operating on regions - 6.8.
nilearn.mass_univariate
: Mass-univariate analysis - 6.9.
nilearn.plotting
: Plotting brain data - 6.10.
nilearn.signal
: Preprocessing Time Series
- 6.1.