Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.
nilearn.plotting.plot_img¶
-
nilearn.plotting.
plot_img
(img, cut_coords=None, output_file=None, display_mode='ortho', figure=None, axes=None, title=None, threshold=None, annotate=True, draw_cross=True, black_bg=False, colorbar=False, **kwargs)¶ Plot cuts of a given image (by default Frontal, Axial, and Lateral)
Parameters: img: Niimg-like object :
cut_coords: None, a tuple of floats, or an integer :
The MNI coordinates of the point where the cut is performed If display_mode is ‘ortho’, this should be a 3-tuple: (x, y, z) For display_mode == ‘x’, ‘y’, or ‘z’, then these are the coordinates of each cut in the corresponding direction. If None is given, the cuts is calculated automaticaly. If display_mode is ‘x’, ‘y’ or ‘z’, cut_coords can be an integer, in which case it specifies the number of cuts to perform
output_file: string, or None, optional :
The name of an image file to export the plot to. Valid extensions are .png, .pdf, .svg. If output_file is not None, the plot is saved to a file, and the display is closed.
display_mode: {‘ortho’, ‘x’, ‘y’, ‘z’} :
Choose the direction of the cuts: ‘x’ - saggital, ‘y’ - coronal, ‘z’ - axial, ‘ortho’ - three cuts are performed in orthogonal directions.
figure : integer or matplotlib figure, optional
Matplotlib figure used or its number. If None is given, a new figure is created.
axes : matplotlib axes or 4 tuple of float: (xmin, ymin, width, height), optional
The axes, or the coordinates, in matplotlib figure space, of the axes used to display the plot. If None, the complete figure is used.
title : string, optional
The title displayed on the figure.
threshold : a number, None, or ‘auto’
If None is given, the image is not thresholded. If a number is given, it is used to threshold the image: values below the threshold (in absolute value) are plotted as transparent. If auto is given, the threshold is determined magically by analysis of the image.
annotate: boolean, optional :
If annotate is True, positions and left/right annotation are added to the plot.
draw_cross: boolean, optional :
If draw_cross is True, a cross is drawn on the plot to indicate the cut plosition.
black_bg: boolean, optional :
If True, the background of the image is set to be black. If you wish to save figures with a black background, you will need to pass “facecolor=’k’, edgecolor=’k’” to matplotlib.pyplot.savefig.
colorbar: boolean, optional :
If True, display a colorbar on the right of the plots.
kwargs: extra keyword arguments, optional :
Extra keyword arguments passed to matplotlib.pyplot.imshow